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Proea and Electromagnetic Fields 
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In the framework of the proper orthochronous Lorentz group, the old connection 
is revived between the electromagnetic field characterized by a self-dual tensor 
and a traceless second-rank spinor obeying the Proca equation. The relationship 
between this spinor and the Hertz potential also considered as a self-dual tensor 
is emphasized. The extension of this formalism to meet the covariance under 
the full Lorentz group is also discussed. 

1, I N T R O D U C T I O N  

In  the  p r e f a c e  o f  t he i r  r ecen t  b o o k ,  P e n r o s e  a n d  R ind l e r ,  (1984) s ta te ;  

Spinor Calculus may be regarded as applying at a deeper level of structure of 
space-time than described by the standard world tensor calculus . . . .  In fact any 
world tensor calculation can by an obvious prescription be translated into a 
2-spinor form. The reverse is also, in a sense, true . . . .  This effective equivalence 
may have led some "sceptics" to believe that spinors are "unnecessary." We 
hope that this book will help to convince the reader that there are many classes 
of spinorial results.., whose antecedents and interrelations would be totally 
obscured by tensor descriptions. 

In  f ac t  we  h a v e  b e e n  t ry ing  fo r  s o m e  t i m e  to  u p h o l d  s imi l a r  i deas  

w i t h i n  t he  f r a m e w o r k  o f  e l e c t r o m a g n e t i s m .  In  th is  w o r k  we  sha l l  n o t  be  

c o n c e r n e d  w i t h  q u a n t u m  m e c h a n i c s  a n d ,  u n l i k e  m o s t  a u t h o r s  [ n o t a b l e  

e x c e p t i o n s  are  B a t e m a n  (1914) a n d  L a p o r t e  a n d  U h l e n b e c k  (1931)] ,  we  

use  a c o m p l e x  t h r e e - v e c t o r  ( se l f -dua l  t enso r )  r a t h e r  t h a n  a rea l ,  an t i sym-  

m e t r i c  t e n s o r  to d e s c r i b e  t he  e l e c t r o m a g n e t i c  field. W e  also use  the  H e r t z  

p o t e n t i a l s  i n s t e a d  o f  t h e  f o u r - v e c t o r  po t en t i a l .  

T h e n  we  d i scuss  t he  e q u i v a l e n c e  b e t w e e n  the  2 - s p i n o r  f ield a n d  the  

c o m p l e x  e l e c t r o m a g n e t i c  f ield,  first in a p e d e s t r i a n  w a y  a n d  t h e n  in a m o r e  

r i g o r o u s  m a n n e r .  
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2. PEDESTRIAN A P P R O A C H  

We start with the Maxwell equations; 

~kl,. ~IE m = _~__ O,Hk, ~ktm 0 IHm = e_ OtEk, k, 1, m = 1, 2, 3 (1) 
r c 

where Ek = Ek(X, t) and Hk = Hk(~, t) are the components of the electric 
and magnetic fields, ~k~,. is the permutation tensor, e and /~ are the 
permittivity and the permeability, respectively, c is the velocity of light, 0j 
and 0, are the derivatives with respect to xj and t, respectively, and ~ is an 
arbitrary point in R 3. 

If we introduce the complex vector 

Aj = - (x/~Ej - ix/~/-/~), i=  x / ~ ,  j = 1, 2, 3 (2) 

equations (1) become (n is the refractive index) 

i~klm akAm = n OtAk, k = 1 ,  2, 3 (1') 
c 

From (1), we get the following set of equations: 

+ ie Ot(Exq- iEy)+Oz(Hx+ iHy) = (Ox~ iOy)H~ 

Oz(Ex + iEy) �9  i tz Ot(Hx + iHy) = (Ox ~: iOy)Ez 
c 

which becomes in terms of A; 

(Ox + iOy)Az=(o~ +no , ) (Ax  + iAy) 

Let us now consider a set of two spinors ~a()7, t), a = 1, 2, with complex 
components 0~()7, t), c~ = 1.2, satisfying the Pauli equation; 

oJOJ-cO,  * (~, t )=O,  a = l , 2  (4) 

are the Pauli matrices, and we use the summation convention 0-~aj = 
Cq~x + 0-2ay + o'3Oz with the following representation of the Pauli matrices: 

0-~= O1 ; '  ~ 1~ O l '  ~ I10 -011 
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Equation (4) takes the form 

(a~ + iay)O~-(a=+na~)~ =0  

The comparison of (3) and (5) leads to the identifications 

~bl = Az, 0~ = a~ + iAy 022 = -A~, ~b~ = Ax - iAy (6a) 

o r  

Ax=�89 Ay 1 l = 1  , = = ~ ( 0 2 -  0~), Az ~(01- ~b2) (6b) 

with the constraint on the spinor field 

0{ + 02 = 0 (7) 

If one denotes by cry'. the components of the matrix ~rj, the relations (6a) 
and (6b) may be written in a more compact form: 

g,: = o'],.A j (8a) 

Aj = �89 o-~,a0: (8b) 

with summation on j in (8a) and on the indices a, a in (8b). Using (6) and 
(7), it is trivial to prove the equivalence of equations (l ') and (4). 

The Poynting vector S~ and the energy density W of the electromagnetic 
field are defined by the relations 

ic ~ A,k1_ C. 2 
Sj = 4~r---~ Wk, l.  - 16~r y' (*"+qJ*~) a = l  

(9) 
1 : 

y, vea+xI ," W =  -ATA j = ] ~  a = l  

and they satisfy the conservation equation oJSj-n OtW= O. The asterisk 
denotes the complex conjugation and ~a+ is the Hermitian conjugated 
spinor. 

Let us now introduce a scalar q~ such that 

2 2 Az=O] = Oz--~Ot ~ (10) 

Then, using (5) and (6), we get 

A,,=2[(O,,+iOy)(oz-n)~o+(Ox-iOy)(oz+not)q~] 
(10') 

Ay=l[(o,:+iOy)(o~-not)q~-(O,,-iOy)(az+not)q~] 
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Define the vector ~ by "~ = ~pK, where K is a unit vector along the z axis; 
then from (10) and (10') we get at once 

= ~pK = FI+ iM (11) 

where rI and M are, respectively, the electric and magnetic Hertz vector 
(Jones, 1964). Since no special choice of z axis has been made, it follows 
that any electromagnetic field in a homogeneous isotropic medium in free 
space, free from charges and currents, can be expressed either in terms of 
the spinors ~ "  or in terms of the complex Hertz vector "~ 

We have been using for some time the spinor formalism to discuss 
electromagnetic beam propagation particularl~ in the domain of guided 
waves (Hillion and Quinnez, 1985a, 1986a) and optical fibers (Hillion and 
Quinnez, 1986b). Let us only mention, for instance, that assuming propaga- 
tion in the Oz direction, the TM and TE modes correspond, respectively, 
to Im ,p =0  and Re ~ =0  in (10). 

An interesting case is when one has 

0~ =f ig , ,  021 =flg2 
(12) 

tp~ =f2gl O~ = f2g2 

where (f~, fz) and (g~, gz) are the components of spinors satisfying the Pauli 
equation. 

The condition (7) becomes 
f~gl +f292 = 0 (13) 

By substituting (12) into (6) and using (13), it is easy to show that Aj is a 
null vector A~A j = 0, which implies, according to (2), 

eLEI2=~IHI 2, E. H = 0  (14) 

This situation corresponds to the TEM modes for guided waves or to the 
Bateman waves (Hogan, 1984) in a more general context. In fact we started 
our work with this particular case (Hillion and Quinnez, 1985b-d). 

3. RIGOROUS APPROACH 

3.1. Proca Field 

The pedestrian approach is unsatisfactory, since we did not justify the 
introduction of the two spinors ~ .  But everything becomes clear in a 
relativistic framework; consider a traceless second-rank spinor ~rs (r, s = 
1, 2) and the Proca equation (Corson, 1954; Umezawa, 1956): 

0r~r 0 (15) 
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with 

{ n} 
a r~ = tr~0r~ ~, cr~ = {cri, cr0}, 0~, = 3;, 0o = -- a, , j = 1, 2, 3 

" e 

(15') 

As is well known (Corson, 1954; Umezawa, 1956), the Proca spinor 
field that corresponds to particles with spin one is a second-rank spinor 
with zero trace transforming according to the @(1, 0) representation of the 
unimodular group SL(2, C). 

Moreover, it defines a self-dual tensor characterizing the electromag- 
netic field. As a consequence, the complex quantities Aj must be considered 
as the cemponents (0, j)  and (k, I) of a self-dual tensor/~,~ (/z, v=0 ,  1, 2, 
3). 

The connection between/~,~ and ~b's is 

= cr~,~o-~r /z, v=O, 1,2,3 (16) 

and the Maxwell equations (1') take the form 

z"~rP~ = O, /z = O, 1, 2, 3 (17) I . t . vpO" ~ 

~,~;r is the Ricci tensor equal to 1 (resp. -1)  for an even (resp. odd) parity 
of the permutation/~, v, p, or of the indices 0, 1, 2, 3 and equal to zero if 
two or more indices are zero. 

It is easy to prove the covariance of both equations (15) and (17) under 
the orthochronous proper Lorentz group ~s as well as the equivalence of 
both formalisms. 

The complex Hertz vector E; must also be considered as a self-dual 
tensor ~ ,~  which defines a traceless second-rank spinor % ~ through relations 
similar to (16). Then on the basis of the covariant requirement it is easy to 
obtain ~ in terms of ~ :  

,~t s s~, t r ~,+a 01,~, (18) 

with the derivative operators defined in (15'). It is trivial to show that $~ 
as defined by (18) is traceless. 

R e m a r k  1. We conform to tradition by calling (15) a Proca equation, 
but in fact Laporte and Uhlenbeck (1931) used it some years before with 
symmetric spinors ~ = e ,q / ,  where e ,  is the metric tensor of the spinor 
geometry (Corson, 1954; Umezawa, 1956). They also noticed the relations 
(16) and (18). The pedestrian approach of the previous section suggests, 
that the traceless spinors are more useful for practical applications [not 
considered in Laporte and Uhlenbeck (1931)]. 
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Remark 2. When the second-rank spinor O~ degenerates into a product 
of two first-rank spinors we obtain the situation described previously in 
Corson (1954) and Eriksen (1960). 

3.2. Proca-Paul i  Field 

At this point we may note that the spinor formalism of the last section 
is not exactly the same as the formalism supplied by the pedestrian approach. 
Moreover, it has two drawbacks; (1) it is difficult to take the traceless 
condition into account; and (2) the only Lorentz covariant that can be 

~s t formed with O~ is the tensor O~ o'~,cr, ~s, which leads to some difficulties 
in obtaining a scalar Lagrangian density. (0~ is the complex conjugate 
spinor). To cope with these facts, we introduce the matrix ~ and the unit 

A 

spinors qbo and C~o: 

o22 

and we define the Proca-Pauli field W a, a = 1, 2, by the relations W 1 = 12qb 0 
and . 2 = ~ 6 o ,  so that equation (15) becomes the Proca-Pauli equation 
cr~'0~.W ~ =0,  a = 1, 2, which is nothing else than equation (4) written in a 
manifestly covariant form, it is easy to prove that W 1 and ~F 2 are first-rank 
spinors, so that we regain the pedestrian approach. 

Then the Lagrangian density 

~.~p____.2 2 ( ~kVo+ O''u'Ol,zX~a __Op..~a+ O.la, XiIa) (20) 

is a real, scalar invariant under the proper orthochronous Lorentz group 
L~+. We may remark that :s has the dimension of a power density rather 
than of an energy density as usual. The variation of Y with respect to 4 "+ 
supplies the Proca-Pauli equation. 

Let j .  be the energy flow vector: from (20) we get 

2 

cr~,~ , /z = 0, 1, 2, 3 (21) 
a = l  

which satisfies the conservation equation O'j, = 0. In agreement with (9), 
the Poynting vector and the electromagnetic energy density are, respectively, 
the components Jr3 and jo of j~,. 

The energy-momentum tensor T.~ deduced from (21) is 

T~,,, =ic ~ (*~+o'~O~*"-0~xIr~+o'~* ~) (22) 
a = l  
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In particular, one has 

and a simple calculation gives 

To, = --2nC(Hk O~E g - Ek O~H g) (23) 

To~ satisfies the conservation equation 0~To, = 0, and for ~ -  0 we get 

Too =--2nC(Hk OOEk- Ek a0 Hk) 

= - c ( / z H .  curl H +  eE.  curl E)  (24) 

To discuss the physical meaning of this energy-momentum tensor, we 
need some results from the vector field theory. Let F be a twice continuously 
differentiable vector field, the quantity A = F �9 curl F, where the dot means 
the usual scalar product, is called the abnormality of the field (Eriksen, 
1960), A may be regarded as a measure of  the departure of F from the 
property of having a normal congruence of  surfaces. So, according to (24), 
the energy-momentum tensor has to do with the vorticity of the electromag- 
netic field. 

To make precise this idea, let us consider an electromagnetic screwfield 
(Eriksen, 1960) of constant abnormality. Such a field is characterized by 
the relations 

H ^ curl H = 0, E ^ curl E = 0 (25) 

where the symbol A denotes the outer product. This implies 

curl H = AH, curl E = AE (25') 

and taking the curl of  (25') gives 

A H + A 2 H = 0 ,  AE +A2E =0  (26) 

where A is the Laplacian operator. Now from (1), (25), and (25'), we get 

dE dH 
H A -~- = 0 = E A d-T (27a) 

AE = I~ dH e dE 
c d t '  A H = - - - c  dt (27b) 

and these relations imply 

d2H A2c 2 
dt 2 ~- - -~  H = 0, 

d 2 E  A2c 2 
E = 0 (28) d t  2 t- n2 
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El imina t ing  h 2 between (26) and (28) leads to the wave equations. Now a 
solution of (27) and (28) takes the form 

A 1 An A 2 An 
E = -~e COS c t + ~ e  Sin c t 

(29) 
A 1 An A 2 )~n 

H = ~ cos --c t - ~ sin --c t 

where A 1 and A 2 are two vectors compelled to satisfy the following relations: 

curl A 1 = h A  1, curl A 2 = h A  2, div A 1 = 0 = div A 2 (30) 

in order for (25') to be fulfilled. Substituting (29) into (24) shows that Too 
is the power density of the electromagnetic screw-field, while from (23) and 
(29) we get 

T o j = 2 c ( A ' a j A 2 - A 2 a j A 1 ) ,  j = 1 , 2 , 3  (31) 

But still using (29) and taking (30) into account, we find the Poynting vector 
a s  

c c 
S =~nn (A1 ^ A2) = 2 - ~  (curl A 1 ̂  A 2 + A  1 ̂  curl A 2) 

and simple calculation gives 

S. = c_c___ (AIO~A 2_A2ajA~ ) + + 1  (curl S)j 
J 2nA 2A 

= Toj + 1  (curl S)j (32) 
4nA 2A 

So Toj is defined in terms of the Poynting vector and of its vorticity. It is 
attractive to speculate about the existence of electromagnetic screw-fields. 

4. DISCUSSION 

The previous formalism works very well as long as one only needs 
invariance under the orthochronous Lorentz group L~. This situation occurs 
in classical mechanics, where we may agree to write equations in a right- 
handed reference frame with positive time going on into the future. In this 
case either the 2-spinor or the self-dual tensor formalism may be simpler 
than the usual formalism with a real antisymmetric tensor or a set of two 
three-vectors (Bateman, 1914; Hillion and Quinnez, 1985a, b, 1986a, b; 
Hogan, 1984). Also, in many cases, the Hertz potential is more useful than 
the real four-vector potential (Jones, 1964; Weeks, 1968; Kerber, 1969; 
Kelso, 1964). 
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The situation is a bit different when one needs invariance under the 
full Lorentz group, which requires in addition to ors and F . .  the complex 
conjugate fields q/g and ~* F.~. There is no problem in the tensorial case, 
since the electromagnetic field tensor F.~ satisfies F,,~ = �89 + ff'*~). In the 
spinor case, many authors [for instance, Moses (1959), Good (1957), and 
Campolattaro (1980), and references given therein], starting with the results 
of Laporte and Uhlenbeck, have been trying with a mixed success to develop 
a 4-spinor formalism of electromagnetism. We show that the Proca-Pauli 
fields may lead to an elegant solution of this problem. 

To be clear, we repeat some of the previous results. The two sets of  
Proca's equations are 

Or~0'r = 0, 0r~0[ = 0 (33) 

We introduce the traceless matrix Ft and its Hermitian conjugate 1~ + together 
with the unit spinors ~o and C~o: 

~01 ~'~, f U =  0! ~! ~ o = [ ~ ]  ~ o = [ ~ ]  (34) 

We define the first-rank spinors ~ ,  ~ a ,  a, d = 1, 2, transforming, respec- 
tively, according to the representations ~b(�89 0) and ~(0, �89 of the SL(2, C) 
group: 

'I~' = tiC'o, 'V ~ = a ~ o ,  'I'i = n+,~o, 'V~ = a+~o  (35) 

From (33) and using the well-known relations 

ali ~--a2~, 022 = Oil, ol2= -o2i, a2i-= -Ol~ 

one proves easily that the spinors 't sa and ~ satisfy the equations 

(o'J0j - ~roao)~ ~ = 0, a = 1, 2 
(36) 

( o'J oj "~ O'oOo)"tI~ & = O, d = l , 2  

Let ~b ~, a = 1, 2, be the two 4-spinors 

q~' = [~1i] [ ~ i ]  q)2: I~!l (37) 

They satisfy the Dirac equation y~O~qb ~= 0, a = 1, 2, with, according to 
(36), the following representation of the matrices 3': 

y j=  ; j  ~ ,  yo= Oo O a~ (38) 

We shall discuss elsewhere the applications of this formalism. 
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